Mechanism of dioxygen formation catalyzed by vanadium bromoperoxidase. Steady state kinetic analysis and comparison to the mechanism of bromination.

نویسندگان

  • R R Everett
  • H S Soedjak
  • A Butler
چکیده

The steady state kinetic mechanism of the bromide-assisted disproportionation of hydrogen peroxide, forming dioxygen, catalyzed by vanadium bromoperoxidase has been investigated and compared to the mechanism of monochlorodimedone (MCD) bromination under conditions of 0.0125-6 mM H2O2, 1-500 mM Br-, and pH 4.55-6.52. Under these conditions, 50 microM MCD was sufficient to inhibit at least 90% of the dioxygen formation during MCD bromination. The rate data is consistent with a substrate-inhibited Bi Bi Ping Pong mechanism, in which the substrate bromide, is also an inhibitor at pH 4.55 and 5.25, but not at pH 5.91 and 6.52. The kinetic parameter KmBr, KmH2O2, KisBr, and KiiBr determined for the reactions of bromide-assisted disproportionation fo hydrogen peroxide and MCD bromination are similar, indicating that the mechanisms of both reactions occur via the formation of a common intermediate, the formation of which is rate-limiting. Fluoride is a competitive inhibitor with respect to hydrogen peroxide in both reactions at pH 6.5. At high concentrations of hydrogen peroxide, the bromide-assisted disproportionation of hydrogen peroxide occurs during the bromination of MCD. The sum of the rates of MCD bromination and dioxygen formation during MCD bromination is equal to the rate of dioxygen formation in the absence of MCD. The apportionment of the reaction through the MCD bromination and dioxygen formation pathways depends on pH, with much lower hydrogen peroxide concentrations causing significant dioxygen formation at higher pH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the regiospecificity of vanadium bromoperoxidase.

Vanadium haloperoxidase enzymes catalyze the oxidation of halide ions by hydrogen peroxide, producing an oxidized intermediate, which can halogenate an organic substrate or react with a second equivalent of hydrogen peroxide to produce dioxygen. Haloperoxidases are thought to be involved in the biogenesis of halogenated natural products isolated from marine organisms, including indoles and terp...

متن کامل

Kinetic, mechanistic and thermodynamic investigations on Iridium (III) catalyzed oxidation of D-Mannitol by N-chloro-p-toluenesulfonamide in perchloric acid medium

The present paper deals with the kinetics and mechanism of homogeneously Ir(III) chloride catalyzed oxidation of D-mannitol by chloramine-T [CAT] in perchloric acid medium in the temperature range of 30 to 45 0C. The reaction is carried out in the presence of mercuric acetate as a scavenger for chloride ion. The experimental results show first order kinetics with respect to the oxidant [CAT] an...

متن کامل

Kinetic Aspects of Tetrahydrobenzo[b]pyran Formation in the Presence of Fructose as a Green Catalyst: a Mechanistic Investigation

The kinetics and mechanism of the reaction between benzaldehyde 1, malononitrile 2 and dimedone 3 in a mixture of ethanol and water as solvents in the presence of fructose as a biodegradable catalyst has been studied by the spectroscopic method (UV-Vis spectrophotometry method). The influence of various parameters (temperature, solvent and concentration) was studied on the reaction by means of ...

متن کامل

Pseudo Steady State Gas Flow in Tight Reservoir under Dual Mechanism Flow

Gas reservoirs with low permeability (k<0.1 mD) are among the unconventional reservoirs and are commonly termed as "Tight Gas Reservoirs". In conventional gas reservoirs that have high permeability, the flow of gas is basically controlled by the reservoir permeability and it is calculated using the Darcy equation. In these reservoirs, gas flow due to gas diffusion is ignored compared to Dar...

متن کامل

Coadsorption of Dioxygen and Carbon Monoxide on a Mg(100) Surface

The activation of carbon monoxide by oxygen on Mg(100) surface has been investigated by X-ray photoelectron spectroscopy (XPS). Carbon monoxide is only weakly adsorbed (dispersion-type forces) on a magnesium surface. The XPS result has shown that the dissociation of carbon monoxide leading to the formation of a metastable surface carbonate species occurs through the participation of an oxyg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 26  شماره 

صفحات  -

تاریخ انتشار 1990